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system with motivational pedagogical
agents
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Adaptive learning systems increasingly employ pedagogical agents (PAs) to enhance students’
engagement and learning outcomes, yet little is known about how motivational PAs influence
students’ conceptual understanding and strategic choice-making. This study compared 49 school
students (at 9th and 10th grade) using an adaptive algebra learning environment with either
motivational PAs or instructional prompts (non-PAs). Results revealed that while all students
demonstrated learning gains, prior knowledge significantly moderated outcomes. Lower-knowledge
students achieved the greatest gains through reflective engagementwith foundational tasks, whereas
higher-knowledge students often adopted intuitive but error-prone strategies. Notably, process
mining and lag sequential analysis revealed distinct choice-making trajectories, uncovering how
motivational PAs influenced self-regulation patterns over time. This study advances the field by
operationalizing choice-making as a measurable self-regulated learning construct and reframing
strategic disengagement as an adaptive, agentic behavior. Findings underscore the importance of
designing adaptive systems that support both content mastery and strategic choice-making.

A central goal of education is to cultivate self-regulated learners capable of
making strategic and adaptive choices that enhance learning1,2. Choice-
making, a critical self-regulated learning (SRL) component, reflects learners’
cognitive and metacognitive processes3,4. However, learners’ choices vary
significantly based on performance levels and prior knowledge5.

High-performing students, those actively engaged and achieving
strong learning gains, tend to select challenging tasks (e.g., quizzes, design
reformulation) and strategically use scaffolds (e.g., evaluating visual aids) to
optimize learning outcomes6–8. In contrast, low-performing students, those
passively engaged or disengaged and achieving low learning gains, often
avoid challenges, misuse scaffolds, and react impulsively to errors rather
than engaging in metacognitive planning9,10.

Prior knowledge further shapes these behaviors. Learners with limited
foundational knowledge struggle with complex tasks, yet targeted scaf-
folding and adaptive feedback can help foster high performance11,12. Con-
versely, high-prior-knowledge (HPK) learners may choose to disengage if
tasks lack meaningful challenge13. This raises a critical question: How can
educational systems scaffold low-prior-knowledge (LPK) learners to
becomehigh-performing studentswhile supportingHPKlearners to sustain
their high performance through strategic choice-making?

Adaptive learning systems, such as Intelligent Tutoring Systems (ITS),
offer promising solutions by embedding adaptive scaffolds that guide

choice-making through real-time feedback, metacognitive prompts, and
personalized learning pathways. For instance, Betty’s Brain provides stra-
tegic hints (viz., hints that support debugging and assessment of causal
models) that encourage learners tomonitor performance, reflect on actions,
and make informed decisions7. Similarly, MetaTutor supports goal-setting
and self-monitoring via metacognitive prompts and interactive
dashboards14,15. Notably, many adaptive platforms operationalize these
features through pedagogical agents (PAs) – interactive entities designed to
simulate human-like guidance16,17. These agents enhance engagement by
delivering motivational prompts, scaffolding complex tasks, and persona-
lizing feedback.

Despite the integration of PAs into adaptive learning systems, a critical
gap remains in understanding how PAs influence students’ choice-making
behaviors, particularly in relation to their prior knowledge. While systems
such as Betty’s Brain andMetaTutor providemotivational and instructional
scaffolds, their impact on decision-making processes is often examined
through aggregated metrics such as task completion rates rather than
granular process data like problem-solving pathways, hint request fre-
quency, and persistence after errors. This limitation prevents a nuanced
understanding of how learners dynamically interact with PAs, highlighting
the need for research that captures the fine-grainedmechanisms underlying
choice-making within adaptive learning environments.

1Saarland University, Saarland Informatics Campus, Department of Computer Science, Saarbrücken, Germany. 2University of Oulu, Learning & Educational
Technology Research Unit (LET), Oulu, Finland. e-mail: nagashima@cs.uni-saarland.de

npj Science of Learning |           (2025) 10:77 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-025-00366-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-025-00366-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41539-025-00366-7&domain=pdf
mailto:nagashima@cs.uni-saarland.de
www.nature.com/npjscilearn


To address this gap, this study investigates how PAs withmotivational
prompts influence conceptual understanding and strategic choice-making
in an algebra-focused adaptive learning system. Specifically, we explore the
following research questions:

RQ1: How do PAs with motivational prompts affect students’ con-
ceptual understanding, moderated by prior knowledge?

RQ2: How do these PAs shape strategic choice-making across tasks,
moderated by prior knowledge?

RQ3: How do prior knowledge levels dynamically influence choice-
making processes over time?

Self-regulated learning (SRL) involves cognitive, metacognitive,
motivational, and behavioral processes that learners use to plan, monitor,
and regulate their learning1,18. Within Zimmerman’s cyclical SRL model,
choice-making emerges as a process that bridges the performance and self-
reflection phases. During performance, learners monitor their progress and
evaluate their understanding; in self-reflection, they use this information to
adapt strategies and decide on their next steps. Choice-making oper-
ationalizes this transition as it is the moment when learners act on their
monitoring by deciding, for example, whether to attempt an optional task,
change their problem-solving approach, or revisit a resource. In our study,
this process ismeasured as the frequency of engagement with optional tasks
in an adaptive learning system, providing an observable indicator of lear-
ners’ in-situ regulation and agency.

While grounded in Zimmerman’s model, choice-making can also be
further interpreted through Oppezzo and Schwartz’s19 four-stage behavior
change framework (“pre-intend,” “intend,” “implement,” and “inhabit”
stages), which describes how strategic actions can evolve from initial con-
sideration to stable, self-sustaining practices. In the context of our study,
inhabiting a choice-making strategy does not imply automatic repetition
without reflection; rather, it refers to the internalization of strategic rea-
soning at each choice opportunitywhere the decision is to engagewith a task
or to strategically disengage from it. This view alignswith SRL’s emphasis on
adaptive expertise2, where learners can continue making effective, flexible
decisions or strategic choices without ongoing support and adapt their
strategic thinking to novel situations.

Adaptive learning systems, including intelligent tutoring systems (ITS),
increasingly support SRL through real-time scaffolding and feedback15,20.
Research in these systems has extensively explored goal-setting21, self-
monitoring11, and help-seeking10, yet choice-making, an essential aspect of
SRL, remains comparatively understudied. This gap arises partly from the
tension between traditional adaptive system design principles and the
complexity ofmodeling choice-makingbehaviors.Historically, systems such
as the Cognitive Tutor and other ITSs have prioritized structured learning
sequences that guide learners through predefined pathways to optimize skill
mastery22. Although such approaches are effective for delivering adaptive
feedback, error correction, and resource recommendations13,23, they often
restrict learners’ autonomy in selecting tasks, strategies, or resources21,24. One
notable exception is Roll et al.’s10 Help Tutor, which embedded metacog-
nitive feedback on help-seeking into the Cognitive Tutor and demonstrated
that learners can be supported to make more deliberate, self-regulated
choices about whether, when, and how to seek assistance.

Additionally, choice-making itself poses significant modeling chal-
lenges. It is highly context-dependent, influencedbydynamic factors such as
motivation, prior knowledge, andperceived task difficulty25,26. Unlike binary
tasks with clear right or wrong answers, choice behaviors require nuanced
assessments of learners’ adaptive capacities4 and flexibility in problem-
solving27. This complexityhas created both technical and theoretical hurdles
for integrating choice-making into adaptive learning environments.

In the broader SRL landscape, choice-making shares similarities with
other self-regulatory processes but is best understood as a broader construct
that encompasses certain behaviors such as goal-setting, self-monitoring,
help-seeking, and task selection. Similar to goal-setting, choice-making
involves aligning potential actions with learning objectives; however, while
goal-setting establishes the target28, choice-making focuses on the in-the-
momentdecisions abouthowtopursue, revise, or adapt smaller goals toward

the end target29. It alsobuilds on self-monitoring since learnersmust evaluate
their progress to make informed decisions. Yet, self-monitoring is primarily
evaluative, whereas choice-making requires translating that evaluation into
action or a strategic choice not to act30. Help-seeking can be viewed as one
specific form of choice-making, where the selected action is to obtain
assistance from peers, instructors, or the system31. Similarly, task selection,
often framed as choosing between tasks of varying difficulty32, is a particular
manifestation of choice-making focused on selecting the next task. In con-
trast, the broader construct of choice-making extends beyond these specific
behaviors to include persisting independently, switching strategiesmid-task,
or engaging with different resources within or across tasks.

A related and equally important construct is strategic disengagement,
defined as a learner’s intentional decision not to implement a strategy or
engage with an opportunity when doing so is unlikely to yield additional
benefit33. For example, a student may decide not to request a scaffold when
solving a familiar problem type because they are confident in their ability to
succeed independently. Such disengagement differs from avoidance due to
low motivation; it reflects metacognitive evaluation and selective effort
investment, both of which are essential for developing adaptive expertise.

Neglecting choice-making in adaptive systems risks overlooking how
learners develop adaptive expertise, which is the capacity to apply knowl-
edge flexibly across novel contexts2,4. Strategic choice-making involves
weighing whether to persist independently, seek help, revise work, or
attempt alternative strategies9,34. However, many adaptive platforms still
prioritize efficiency (e.g., rapid error correction) over autonomy, which can
inadvertently encourage dependence on system guidance rather than fos-
tering self-regulated learning35,36.

Recent evidence highlights the value of embedding structured oppor-
tunities for choice in adaptive systems. For example, Nagashima and
colleagues 8,37 found that students in an algebra tutor who received meta-
cognitive scaffolding chose to use visual supports more strategically,
improving their algebra performance. Similarly, in Posterlet, learners who
actively sought critical feedback and revised their work outperformed their
peers9,38, demonstrating that choice-making can enhance engagement and
learning outcomes3.

In adaptive learning systems, theoretically grounded prompts can
encourage learners to engage in high-level SRL activities (e.g., self-expla-
nation, solution comparison) and persist through challenges20. While prior
systems like Betty’s Brain and MetaTutor have offered cognitive or meta-
cognitive scaffolds7,15, few have explicitly emphasized themotivational value
of strategic choice-making (e.g., “Choosing challenging tasks builds exper-
tise”). Our study addresses this gap by embedding expectancy-value-
informed prompts in pedagogical agents to scaffold both engagement and
strategicdisengagement, helping learners progress frommomentary choices
to sustained, self-regulated learning habits. In the following section, we
detail the theoretical foundations for designing thesemotivational prompts,
focusing on howExpectancy-Value Theory39 guided their development and
application within our system.

In adaptive learning environments, prompts delivered by pedagogical
agents (PAs) offer an opportunity to influence learners’motivation and SRL
behaviors (e.g., goal-setting, metacognitive reflection) in real time through
targeted feedback and theory-driven messages20,40,41. Research has shown
that prompts grounded in theories such as attribution theory42, social-
cognitive theory43, goal orientation theory44, expectancy-value theory45, and
self-determination theory25 can enhance learners’ self-efficacy, interest,
engagement,motivation, problem-solving, and learning outcomes in STEM
contexts46–51.

While all these theories offer promising directions, we decided against
implementingmost of them in the present study. Self-determination theory,
for example, presupposes intrinsic motivation, which is subjective, and
integrating it into an intervention consisting of stand-alone prompt mes-
sages is challenging17. Attribution theory links motivation to personal
beliefs, requiring nuanced adaptation over time52. Social-cognitive theory
interventions often involve rich narratives or modeling sequences, which
exceed the scope of our intervention47. Goal orientation theory requires
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differentiating between mastery- and performance-oriented learners to
adapt prompts effectively14. To avoid introducing additional parameters and
complexity, we selected Expectancy-Value Theory (EVT39) as the sole the-
oretical foundation for prompt design in this study.

EVT posits that learners’motivation is shaped by two key factors: their
expectancy for success (beliefs about their ability to succeed) and the value
they place on the task39,53. Task value encompasses intrinsic value (enjoy-
ment or interest), utility value (usefulness for current or future goals),
attainment value (personal importance of success), and perceived cost45,54.
Drawing on the framework, each prompt in our study was explicitly
designed to target one or more of these motivational constructs. For
example, prompts emphasizing the practical benefits of manual calculation
(e.g., “Manual calculations are required in many exams. Regular practice
prepares you optimally for this.”) align with attainment value, while
prompts highlighting strategyflexibility (e.g., “If youknowandcan compare
several methods, you are more flexible and can choose the best method
depending on the problem.”) address utility value and, indirectly, expec-
tancy for success. A complete list of prompts used in the study, categorized
by their corresponding EVT constructs, is provided in Supplementary
Information (see Supplementary Table 1).

Moreover, motivational prompts from PAs differ from non-agent
prompts in several important ways. PAs can enhance immediacy by deli-
vering prompts contextually and in direct response to learner actions, thus
reinforcing motivation at critical moments. They also provide personali-
zation by adapting the tone or content of prompts to learners’ progress and
increase social presence throughhuman-likebehaviors suchas gaze, gesture,
and conversational language50. These qualities, often referred to as the
persona effect, havebeen shown to increase learner engagement andpositive
attitudes toward the learning task.

Compared to static or system-generated text prompts, PA-delivered
prompts may activate motivational mechanisms more effectively by simu-
lating a supportive social interaction. For example, immediacy allows the
agent to connect task value to the learner’s just-completed step, while social
presence canmake the value message feel more personally relevant. Studies
have found that animated PAs canmoderate learning outcomes depending
on factors like prior knowledge, suggesting that their impact is not solely
visual but linked to how motivational content is framed and timed55.

In this study, embedding EVT-informed prompts into PA interactions
aimed to leverage these mechanisms to support learners’ expectancy beliefs
and perceived task value, with the goal of enhancing both engagement and
performance in an algebra-focused adaptive learning environment.

Results
Conceptual understanding (RQ1)
Overall, all students showed an improvement from pretest to posttest, with
an average increase of 4.22 points. Descriptive statistics (Table 1) revealed
that students in the Agent condition exhibited a trend towards higher pre-
post learning gains (M = 5.27, SD = 4.07) and lower error rates (M = 1.29,
SD = 0.97) compared to those in the Non-Agent condition (learning gains:
M = 3.22, SD = 4.45; error rates: M = 1.32, SD = 1.14). ANCOVA results
revealed that the intervention condition (Non-Agent vs.Agent) didnothave
a significant effect on either posttest scores (p = 0.189) or error rates
(p = 0.668) after controlling for pretest scores. However, pretest score was a

significantpredictor of bothposttest performance (p < 0.001) and error rates
(p = 0.030), indicating that students’ prior knowledge strongly influenced
their conceptual understanding, regardless of the assigned condition.

To examinehow the impact of pedagogical agents (PAs) on conceptual
understanding varied by prior knowledge levels, we conducted two-way
ANOVAs with condition (Agent vs. Non-Agent) and prior knowledge
(HPKvs. LPK) as factors, analyzing posttest scores, learning gains, and error
rates respectively. Results indicated a significant main effect of prior
knowledge on posttest scores, F(1, 45) = 16.93, p < 0.001, showing thatHPK
students achieved significantly higher posttest scores compared to LPK
peers. However, there was no significant main effect of condition F(1,
45) = 0.26, p = 0.611, nor was there a significant interaction between con-
dition and prior knowledge F(1, 45) = 0.00, p = 0.991. Post-hoc pairwise
comparisons (Tukey-adjusted) revealed that the Non-Agent LPK group
scored significantly lower than both the Non-Agent HPK group (p = 0.027)
and the Agent HPK group (p = 0.006). As depicted in Fig. 1a, HPK students
consistently scored higher, though the Agent condition did not significantly
outperform the Non-Agent condition.

For learning gains, there was also a significant main effect of prior
knowledge, F(1, 45) = 14.98, p < 0.001, with LPK students demonstrating
greater improvements due to lower baseline scores (see Table 1). The main
effect of condition approached significance (F(1, 45) = 3.62, p = 0.064),
indicating that students in the Agent condition showed a trend towards
higher gains. However, there was no significant interaction effect (F(1,
45) = 0.11,p = 0.738). Post-hoc analyses indicated that theAgentLPKgroup
achieved significantly higher learning gains compared to the Non-Agent
HPKgroup (p = 0.002). Figure 1b illustrates that learning gainswere greater
for LPK students, particularly those in the Agent condition.

Regarding error rates, results showed a marginally significant main
effect of prior knowledge, F(1, 45) = 3.45, p = 0.070, suggesting a trend
where HPK students had lower error rates. There were no significant main
effects of condition (F(1, 45) = 0.01, p = 0.916) or interaction effects (F(1,
45) = 1.16, p = 0.288). Post-hoc comparisons revealed no statistically sig-
nificant differences between groups. However, Fig. 1c shows descriptively
lower error rates among HPK students, especially in the Agent condition,
suggesting a potential reduction of errors in this subgroup.

Choice-making behaviors (RQ2)
On average, students engaged with optional tasks in 55% of the opportu-
nities presented across all scenarios. In this context, “engagement” is defined
as the proportion of available optional tasks a student chose to complete, out
of the total number of such opportunities encountered. Thus, a value of 0.70
for S1_WorkExmeans that, on average, students opted to engage with 70%
of the worked-example opportunities they were given.

Although Fig. 1d suggests a possible interaction, two-way ANOVA
showed no significantmain effect of condition, F(1, 45) = 0.39, p = 0.537, or
prior knowledge, F(1, 45) = 0.01,p = 0.924on their choice frequency, andno
significant interaction effect between condition and prior knowledge, F(1,
45) = 0.93, p = 0.341. Post-hoc pairwise comparisons also showed no sta-
tistically significant differences between groups. As visualized in Fig. 1d,
choice frequency was higher for LPK students in the Non-Agent condition,
but this pattern reversed in the Agent condition, where HPK students
showed higher choice frequency. This pattern suggests that the effectiveness

Table 1 | Means and standard deviations of variables related to conceptual understanding

Non-agent Agent

Overall (n = 25) LPK (n = 10) HPK (n = 15) Overall (n = 24) LPK (n = 14) HPK (n = 10)

Pretest 8.12 (5.15) 3.08 (1.99) 11.48 (3.56) 6.63 (5.46) 2.80 (2.13) 11.98 (3.90)

Posttest 11.34 (4.53) 8.63 (5.16) 13.15 (3.05) 11.90 (4.16) 10.00 (3.99) 14.55 (2.80)

Learning Gains 3.22 (4.45) 5.55 (5.27) 1.67 (3.11) 5.27 (4.07) 7.20 (3.60) 2.58 (3.11)

Error Rate 1.32 (1.14) 1.46 (1.14) 1.22 (1.17) 1.29 (0.97) 1.66 (1.03) 0.77 (0.62)

LPK low prior knowledge students, HPK high prior knowledge students,values in parentheses represent standard deviations.
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of motivational pedagogical agents may depend on students’ prior knowl-
edge levels, which calls for a more detailed comparison of students’ choice-
making behaviors across different choice-making scenarios.

A closer look at Table 2 reveals distinct engagement patterns. LPK
students tended to prioritize foundational tasks: for worked examples (S1),
engagement rates were higher in bothAgent (MLPK = 0.71) andNon-Agent
(MLPK = 0.70) conditions compared to HPK peers (MHPK = 0.40–0.47). In
contrast, HPK students engaged more often with advanced tasks regardless
of conditions. For instance, HPK students showed higher engagement with
applying the advanced equalization strategy (S7: MHPK = 0.50–0.67) com-
pared to LPK peers (S7: MLPK = 0.33). Notably, Non-Agent LPK students
exhibited unexpectedly high engagement in comparison tasks (S3,
MLPK = 0.74), possibly reflecting intrinsicmotivation to explore alternatives
without PA encouragement. Overall, HPK students in the Agent Condition
engaged more frequently across all optional tasks (MHPK = 0.58 vs.
MLPK = 0.48), whereas the opposite trend appeared in the Non-Agent
Condition (MHPK = 0.55 vs. MLPK = 0.63, Fig. 1d).

Dynamic choice-making processes (RQ3)
First, LSA was conducted to examine the micro-level, sequential depen-
dencies in students’ choice-making behaviors to identify howHPKandLPK

students differed in their decision-making tendencies during their learning
tasks. Tables 3 and 4 display the transition probabilities matrix across var-
ious categories for students with high and low pretest score, respectively. A
chi-square test verified a significant relationship between the rows and
columns of the recorded frequencies for both high (χ² = 1967.63, df = 49,
p < 0.001, Monte Carlo 2-sided) and low group (χ² = 1311.42, df = 49,
p < 0.001, Monte Carlo 2-sided).

Based on the computation of z-values and Yule’s Q, we found the
following sequences of two elements (lag 1) as statistically significant (that is
z > 1.96 and Q > 0.30, see Table 5):

Overall, both groups exhibited several common transitions, anticipated
sequences within our learning task, reflecting the structured design of the
exercises to guide students through core tasks while fostering reflective and
strategic engagement. Notable shared transitions include #1 (NoToPrompt
→ AttemptSuccess) and #2 (CorrectDecision → AttemptSuccess), which
highlights the capacity of students to complete tasks either independently or
after making correct decisions. Similarly, sequences #3 (AttemptSuccess→
YesToPrompt) and #4 (AttemptSuccess → NoToPrompt) illustrates stu-
dents’ alternation between engaging with reflective prompts provided after
successful attempts. These are designed to encourage deeper reflection and
rationalization of correct decisions. For example, the HPK group seems to

Fig. 1 | Interaction plots between prior knowledge and motivational agent
scaffolding groups on posttest scores, learning gains, error rates, and choice
frequency. This figure shows the interaction plots comparing students with high
versus low prior knowledge across conditions with and without motivational agent
scaffolding. Panel a illustrates posttest scores, where students with high prior
knowledge in the agent condition scored higher than their peers in the non-agent
condition, while low prior knowledge students showedmoremodest improvements.
Panel b presents learning gains (posttest minus pretest scores), highlighting that low
prior knowledge students exhibited larger gains in the agent condition compared to

the non-agent condition, while high prior knowledge students demonstrated smaller
relative gains. Panel c depicts error rates during the learning session, indicating that
high prior knowledge students in the non-agent condition committed more errors,
whereas students in the agent condition maintained lower error levels. Panel
ddisplays choice frequency across tasks, showing that high prior knowledge students
in the agent condition increased their task selection over time, while their peers in the
non-agent condition decreased in frequency. Solid blue lines represent students with
high prior knowledge, and dashed orange lines represent students with low prior
knowledge.
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show higher frequency (z = 19.20, Q = 0.92) of engaging with optional tasks
(i.e., self-explanation) than the LPK group (z = 16.18, Q = 0.90) after suc-
cessfully selecting the most efficient method. Both groups also exhibited
common patterns in error handling, such as sequences #5 (IncorrectDeci-
sion → FailedAttempt) and #6 (FailedAttempt → FailedAttempt). These
behaviors reflect response patterns where errors are followed by rapid
subsequent selections potentially before any substantial re-evaluation.

However, subsequent pathways diverged significantly between the
groups, reflectingdiffering approaches to taskmanagement andprogression
by learners with different prior knowledge. The HPK group exhibited
additional pathways not observed in the LPK group, reflecting their
confidence-driven strategies and willingness to dynamically engage with
tasks and prompts. The sequence #12 (NoToExtra → AttemptSuccess)
demonstrated their ability to bypass preparatory tasks and proceed directly
to task success. Similarly, sequence #13 (CorrectDecision → YesToExtra)
and higher frequency of sequence #3 (AttemptSuccess → YesToPrompt,

z = 19.20, Q = 0.92) highlighted that students in the HPK group, when
achieving success, were more likely to engage in additional advanced
exercises or voluntary tasks. This sequence suggests that, for this group,
successful outcomes increased their willingness to take on further chal-
lenges, creating opportunities for deeper engagement. Additionally,
sequence #15 (YesToPrompt→ AttemptSuccess) demonstrated their suc-
cessful application of insights gained from prompts, leading to task suc-
cessful completion.

In contrast, the LPK group demonstrated a distinct preparatory
approach, with the sequence #16 (YesToExtra→ AttemptSuccess) being
unique to this group. This pathway underscores their reliance on pre-
paratory tasks (i.e., worked examples, which were presented at the
beginning of the learning session) to build confidence and achieve success
in core tasks.

We also conducted a LSA for a significant sequence of three elements.
For the LPK group, the following chains were significant.

Table 2 | Descriptive statistics of students’ choice-making frequency across scenarios

Non-agent Agent

Overall (n = 25) Low (n = 10) High (n = 15) Overall (n = 24) Low (n = 14) High (n = 10)

Overall 0.58 (0.29) 0.63 (0.28) 0.55 (0.31) 0.52 (0.33) 0.48 (0.33) 0.58 (0.34)

S1_WorkEx 0.56 (0.51) 0.70 (0.48) 0.47 (0.52) 0.58 (0.50) 0.71 (0.47) 0.40 (0.52)

S2_Self-Expl 0.52 (0.40) 0.58 (0.35) 0.49 (0.44) 0.54 (0.43) 0.55 (0.42) 0.53 (0.46)

S3_Comp 0.55 (0.43) 0.74 (0.37) 0.42 (0.43) 0.44 (0.37) 0.39 (0.35) 0.50 (0.39)

S4_Resolve 0.27 (0.47) 0.50 (0.58) 0.14 (0.38) 0.40 (0.49) 0.51 (0.50) 0.00 (0.00)

S5_1st Sol 0.56 (0.31) 0.54 (0.30) 0.57 (0.33) 0.53 (0.38) 0.46 (0.37) 0.62 (0.40)

S6_2nd Sol 0.64 (0.36) 0.66 (0.36) 0.63 (0.37) 0.53 (0.39) 0.47 (0.39) 0.60 (0.40)

S7_Adv_Equ 0.58 (0.52) 0.33 (0.58) 0.67 (0.50) 0.42 (0.52) 0.33 (0.52) 0.50 (0.55)

S8_Adv_Sub 0.20 (0.42) 0.00 (0.00) 0.25 (0.46) 0.27 (0.47) 0.17 (0.41) 0.40 (0.55)

Means and standard deviations of students’ choice-making frequency across different scenarios. Values represent the proportion of optional task opportunities within each scenario type that students
chose to complete, out of the total opportunities encountered. Values in parentheses represent standard deviations.
WorkEx worked examples, Self-Expl self-explanations, Comp comparisons, Resolve resolving, 1st & 2nd Sol 1st solution and 2nd solution, Adv_Equ advanced equalization, Adv_Sub advanced
substitution.

Table 3 | Transition probabilities (high prior knowledge group)

Decision action NoToExtra AttemptSuccess NoToPrompt YesToPrompt CorrectDecision FailedAttempt YesToExtra IncorrectDecision

NoToExtra 0.00 0.86 0.00 0.00 0.00 0.14 0.00 0.00

AttemptSuccess 0.00 0.33 0.33 0.29 0.00 0.04 0.01 0.00

NoToPrompt 0.03 0.77 0.09 0.02 0.00 0.06 0.02 0.00

YesToPrompt 0.01 0.68 0.00 0.00 0.09 0.19 0.01 0.02

CorrectDecision 0.03 0.82 0.00 0.00 0.00 0.11 0.05 0.00

FailedAttempt 0.00 0.55 0.00 0.00 0.00 0.45 0.00 0.00

YesToExtra 0.00 0.38 0.13 0.42 0.00 0.08 0.00 0.00

IncorrectDecision 0.00 0.63 0.00 0.00 0.00 0.38 0.00 0.00

Table 4 | Transition probabilities (low prior knowledge group)

Decision action YesToExtra AttemptSuccess NoToPrompt YesToPrompt CorrectDecision FailedAttempt NoToExtra IncorrectDecision

YesToExtra 0.00 0.71 0.19 0.00 0.00 0.10 0.00 0.00

AttemptSuccess 0.01 0.30 0.37 0.25 0.00 0.06 0.00 0.00

NoToPrompt 0.03 0.69 0.09 0.05 0.00 0.11 0.04 0.00

YesToPrompt 0.01 0.52 0.00 0.00 0.10 0.33 0.01 0.04

CorrectDecision 0.00 0.70 0.00 0.00 0.00 0.27 0.03 0.00

FailedAttempt 0.00 0.51 0.00 0.00 0.00 0.49 0.00 0.00

NoToExtra 0.00 0.65 0.00 0.00 0.00 0.30 0.05 0.00

IncorrectDecision 0.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00

https://doi.org/10.1038/s41539-025-00366-7 Article

npj Science of Learning |           (2025) 10:77 5

www.nature.com/npjscilearn


AttemptSuccess → YesToPrompt → CorrectDecision(zlag2 = 3.81,
Qlag2 = 0.66)
YesToPrompt → CorrectDecision → AttemptSuccess(zlag2 = 7.83,
Qlag2 = 0.49)
CorrectDecision → AttemptSuccess → YesToPrompt (zlag2 = 5.70,
Qlag2 = 0.73)
NoToPrompt → AttemptSuccess → NoToPrompt(zlag2 = 10.78,
Qlag2 = 0.57)
For the HPK group, the following chains were significant.
AttemptSuccess → YesToPrompt → CorrectDecision(zlag2 = 4.81,
Qlag2 = 0.79)
CorrectDecision → YesToExtra → YesToPrompt(zlag2 = 10.53,
Qlag2 = 0.90)
FailedAttempt → FailedAttempt → FailedAttempt(zlag2 = 4.33,
Qlag2 = 0.33)
YesToPrompt → CorrectDecision → YesToExtra(zlag2 = 3.61,
Qlag2 = 0.60)
YesToExtra → YesToPrompt → AttemptSuccess(zlag2 = 3.62,
Qlag2 = 0.75)
NoToPrompt → AttemptSuccess → NoToPrompt (zlag2 = 14.01,
Qlag2 = 0.63)
Both groups shared sequences like AttemptSuccess → YesToPrompt

→ CorrectDecision, highlighting their willingness to engage with prompts,
such as those involvingmultiple-choice self-explanation tasks that facilitate
deep reflection upon the choices made. In contrast, the shared sequence
NoToPrompt→AttemptSuccess→NoToPrompt reflects their tendencies
to bypass prompts, likely those requiring extended effort such as manual
calculation.

For the LPK group, three-event sequences YesToPrompt→ Correct-
Decision → AttemptSuccess and CorrectDecision → AttemptSuccess →
YesToPrompt indicate an increased willingness to engage with prompts
after observing that such engagement often leads to successful outcomes.
For the HPK group, sequences such as CorrectDecision→ YesToExtra→
YesToPrompt, and YesToPrompt → CorrectDecision → YesToExtra
exhibit a success-driven engagement pattern. Specifically, success often led
to increased willingness to take on extra advanced tasks. This pattern is
consistent with their higher prior knowledge and confidence. However,
HPK group’s sequence (FailedAttempt → FailedAttempt → Fail-
edAttempt) suggests that some successes may have resulted from quick
judgments of repeated failed attempts rather than thorough reflections or

deep reasonings. Given the higher prior knowledge and confidence in this
group, these learners may have been more inclined to rely on domain
familiarity and heuristic reasoning, making them less inclined to pause for
strategic reconsideration or seek additional support. This finding resonates
with Roll et al.’s10 observations on the mechanism of unreflective repetition
andhelp avoidance,with learners bypassingopportunities formetacognitive
regulation, where learners persist in acting without revising their approach.
This persistent error patternwas not observed in the LPK group, potentially
indicating a more cautious and deliberative approach in the LPK learners’
decision-making processes.

While LSA identifies critical micro-level patterns, process mining
provides an overall view of how students navigated tasks and made choices
during their learning sessions. This analysis revealed dominant pathways
and differences between HPK and LPK students in their sequential choice-
making behaviors (see Fig. 2). This analysis highlights absolute frequencies
and case coverages to reveal the overarching tendencies in their interaction
patterns within the learning environment.

Overall, the process mining analysis reveals that the HPK and LPK
groups exhibit similar overarching patterns and comparable structures of
transitioning between task attempts, prompts, and decision choices. This
similarity aligns with the anticipated outcomes of our task design. Both
groups share core loops, such as AttemptSuccess → NoToPrompt →

AttemptSuccess, further supporting LSA’s findings of a common tendency
to bypass certain prompts such as those requiringmanual calculation efforts.

However, key differences emerge in how these two groups regulate
their actions, handle failures, engage with preparatory tasks, and make
decisions. The process map for the HPK group reveals a pattern of initially
avoiding preparatory tasks (fStart → NoToExtra = 72%), favoring direct pro-
gression to tasks with high success levels (AttemptSuccess, fHigh = 1339). As
their interactions unfolded, they increasingly engaged with more advanced
tasks and prompts, such as in the pathway YesToExtra → YesToPrompt
(fHigh = 32%), demonstrating awillingness to tacklemore complex activities
after initial successes.Atfirst glance, theprocessmap suggests that failures in
the HPK group frequently transitioned to AttemptSuccess, potentially
indicating quick recovery from errors. However, this transition (Failed
Attempt → AttemptSuccess) occurred less frequently in the HPK group
(fHigh = 169) compared to the LPK group (fLow = 207). Furthermore, the
significant three-event sequence FailedAttempt → FailedAttempt → Fail-
edAttempt (zlag2 = 4.33, Qlag2 = 0.33) suggests that the dominant pathway
observed in the process maps may be more reflective of the group’s higher

Table 5 | Significant two element (lag 1) transitions by group

# High prior knowledge group Low prior knowledge group

1 NoToPrompt → AttemptSuccess (z = 13.20, Q = 0.62) NoToPrompt → AttemptSuccess (z = 10.20, Q = 0.54)

2 CorrectDecision → AttemptSuccess (z = 3.83, Q = 0.63) CorrectDecision → AttemptSuccess (z = 2.70, Q = 0.48)

3 AttemptSuccess→ YesToPrompt (z = 19.20, Q = 0.92) AttemptSuccess→ YesToPrompt (z = 16.18, Q = 0.90)

4 AttemptSuccess→ NoToPrompt (z = 19.62, Q = 0.86) AttemptSuccess→ NoToPrompt (z = 19.56, Q = 0.89)

5 IncorrectDecision → FailedAttempt (z = 2.30, Q = 0.64) IncorrectDecision → FailedAttempt (z = 2.93, Q = 0.62)

6 FailedAttempt→ FailedAttempt (z = 19.18, Q = 0.82) FailedAttempt→ FailedAttempt (z = 16.58, Q = 0.74)

7 YesToPrompt → FailedAttempt (z = 5.15, Q = 0.35) YesToPrompt → FailedAttempt (z = 5.85, Q = 0.39)

8 YesToPrompt → CorrectDecision (z = 14.17, Q = 0.99) YesToPrompt → CorrectDecision (z = 2.38, Q = 0.50)

9 YesToPrompt → IncorrectDecision (z = 6.67, Q = 1) YesToPrompt → IncorrectDecision (z = 5.85, Q = 0.39)

10 NoToPrompt → NoToExtra (z = 5.56, Q = 0.75) NoToPrompt → NoToExtra (z = 5.94, Q = 0.83)

11 NoToPrompt → YesToExtra (z = 2.38, Q = 045) NoToPrompt → YesToExtra (z = 3.44, Q = 0.63)

12 NoToExtra → AttemptSuccess (z = 3.84, Q = 0.72) – –

13 CorrectDecision → YesToExtra (z = 2.85, Q = 0.45) – –

14 YesToExtra → YesToPrompt (z = 3.61, Q = 0.60) – –

15 YesToPrompt → AttemptSuccess (z = 7.41, Q = 0.39) – –

16 – – YesToExtra → AttemptSuccess (z = 2.38, Q = 0.50)

Boldface sequences represent patterns unique to each group.
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task frequency and overall engagementwith tasks rather than superior error
regulation. This pattern highlights a defining characteristic of the HPK
group: confidence-driven task engagement and a strong propensity for
success. Their approach is often facilitated by intuitive, heuristic decision-
making and knowledge familiarity, rather than systematic regulation stra-
tegies involving deeper error reflection.

In contrast, the LPK group engagedmore frequently with preparatory
tasks early on, as reflected in pathways like Start→ YesToExtra (f = 75%),
suggesting a focus on foundational activities to build confidence. However,
as interactions progressed, NoToExtra pathways became increasingly pre-
valent (fNoToPrompt → NoToExtra = 29.2%), reflecting a reduced willingness to
engagewith advanced tasks later. This contrasts with theHPKgroup, which
increasingly engagedwith advanced tasksmidway, as seen inYesToExtra→
YesToPrompt (fHigh = 32%). Interestingly, the LPK group demonstrated a
higher proportion of CorrectDecision outcomes compared to the HPK
group (fLow = 70.8%; fHigh = 56%). This suggests a more cautious and
reflective decision-making approach. While the LPK group exhibited a
higher overall number of failures (fLow = 402; fHigh = 305), these behaviors
align with expectations for a group with LPK. Their deliberate engagement
with prompts, however, may have contributed to their more favorable ratio
of correct decision outcomes.

Discussion
This study explores how motivational pedagogical agents (PAs) influence
students’ conceptual understanding and choice-making behaviors in
adaptive learning systems, specifically among students with different levels
of prior knowledge. Our findings contribute both theoretical insights and
practical suggestions for designing adaptive learning systems that can better
support diverse learners’needs. Below,we reflect on keyfindings, theoretical
and design implications, as well as limitations and future directions.

The study examined whether pedagogical agents (PAs) delivering
motivational prompts could enhance students’ conceptual understanding

and strategic decision-making. While descriptive patterns suggested that
students in theAgent condition had slightly higher learning gains and lower
error rates, these differences were not statistically significant after
accounting for prior knowledge.

Several factors may help explain these null findings. First, the inter-
vention duration was relatively short (25min of system use), which may
have limited the accumulation of measurable benefits from motivational
prompts. Prior studies have shown that the impact of motivational scaf-
folding often emerges over longer or repeated exposures17,50. Second, the
motivational prompts were not personalized beyond the choice-making
scenario type. More adaptive tailoring, such as adjusting language com-
plexity, providing targeted hints, or varying prompt frequency based on
student responses, might have yielded stronger effects, particularly for LPK
learners. Third, the prompts were delivered at fixed points within tasks,
without dynamically adapting to indicators of disengagement or mis-
understanding. Literature suggests that timing prompts in response to
students’ in-task behaviors can enhance their motivational impact7,56.
Finally, because both conditions provided the same cognitive and meta-
cognitive choice-making opportunities, the added benefit of motivational
framing alonemay have been insufficient to produce statistically significant
gains in a short-term study.

Despite the lack of significant main effects of condition, prior knowl-
edge clearly shaped students’ learning outcomes. LPK students exhibited
greater learning gains compared to the HPK counterparts (there does not
appear to be a strong ceiling effect, as some HPK students still showed
gains). This result aligns with existing research suggesting that learners with
less initial knowledge often benefit more from scaffolding opportunities5,21.
These findings suggest that combining motivational prompts with more
targeted adaptive support may yield stronger benefits for LPK learners in
future iterations.

Interestingly, although overall choice-making frequencies did not
significantly differ between conditions, we observed nuanced differences in

Fig. 2 | Processmaps of decision-makingpatterns by prior knowledge group.This
figure presents process mining maps generated with the Disco tool using 100% of
activities and 0% of paths, which results in displaying only the most important
connections. Panel (a) shows the high prior knowledge group, while panel (b) shows
the low prior knowledge group. Nodes represent types of learning activities, and
arrows represent transitions between activities, with arrow thickness scaled to
transition frequency. Dashed arrows indicate links to actions occurring at the very
beginning or end of the process. In panel (a), the high prior knowledge group
demonstrates less preparatory activity at the start and greater willingness to tran-
sition directly into advanced tasks. In panel (b), the low prior knowledge group

engages inmore early preparation and shows a stronger tendency to avoid advanced
tasks, reflecting more cautious decision-making. Additionally, the maps highlight
that the low prior knowledge group achieved a higher percentage of correct decisions
overall compared to their high prior knowledge peers. The shading of the nodes
encodes activity frequency: dark blue boxes represent activities that occurred with
higher frequency, while lighter blue boxes represent activities that occurred with
lower frequency. Circles with green shadingmark the start of the process, circles with
red shading mark the end of the process, solid black arrows indicate process flows,
and dashed arrows highlight activities connected to the very beginning or end of the
session.
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specific choice-making scenarios. Students with lower prior knowledge
more often chose foundational tasks, such as worked examples, possibly
indicating a need for building initial confidence before engaging in more
complex tasks. Meanwhile, students with high prior knowledge readily
engaged with more advanced, optional tasks when prompted. This reflects
the nuanced role prior knowledge plays in shaping engagement patterns
while students interact with the system7.

A major strength of this study is the detailed analysis of students'
interactions using lag sequential analysis (LSA) and process mining, which
allowed for a detailed examination of the micro-level and macro-level pat-
terns in students’ choice-making behaviors. Thesemethods offered a deeper
understanding of how learners move through decision-making phases and
how these transitions relate to their learning outcomes. For example, HPK
students exhibited confidence-driven behaviors, bypassing preparatory
tasks, and quickly jumping into challenging tasks after successes, though
sometimes at the cost of repeated failures. In contrast, LPK students took a
cautious anddeliberate approach, which relied on foundational tasks such as
going through worked examples to build confidence over time. This fine-
grained analysis provides valuable insights into the temporal dynamics of
SRL and reveals the diverse pathways that learners take as they engage with
learning tasks dynamically within adaptive systems57.

Our study offers two significant theoretical contributions to the
understanding of self-regulated learning (SRL) by providing new insights
into the temporal dynamics of choice-making and the role of strategic
disengagement in adaptive learning environments.

First, we examine choice-making not as a comprehensive oper-
ationalization of SRL but as a specific,measurable facet of SRL behavior that
can be tracked and analyzed over time. By leveraging process mining
methods to capture students’ engagement with optional tasks, we illustrate
how choice-making unfolds as a context-sensitive, temporal-dynamic
process, which is consistent with Zimmerman and Campillo1’s cyclical
model of self-regulation and Oppezzo and Schwartz19’s staged behavior-
changemodel. Rather thanclaiming tomeasure all formsof SRLchoice (e.g.,
goal-setting, help-seeking), our analysis focuses on task-level engagement
decisions within clearly defined scenarios. This finer-grained, temporal lens
responds to calls by Azevedo et al.15 for methods that can capture SRL
processes in situ and in sequence. Our findings further suggest that prior
knowledge plays an important role in shaping these temporal choice pat-
terns: high prior knowledge (HPK) students often made rapid but some-
times error-prone selections, potentially reflecting the expertise reversal
effect58, whereas low prior knowledge (LPK) students engaged more
deliberately, whichwas associated with fewer errors. These distinct patterns
underscore the importance of tailoring scaffolds to learners’ cognitive
readiness and demonstrate how temporal analyses can reveal differences
that aggregate measures might obscure6,57.

Second, our findings contribute to the emerging conceptualization of
strategic disengagement as adaptive self-regulation rather than mere dis-
engagement from learning. Traditional perspectives often interpret disen-
gagement negatively, equating it with lack of effort ormotivation. However,
echoing O’Brien et al.59’s agency-driven model, we found that disengage-
ment can represent purposeful, goal-oriented decision-making processes.
Specifically, LPK students deliberately disengaged from advanced tasks to

manage cognitive load and maintain motivation, while HPK students
strategically skipped foundational tasks to optimize efficiency and resource
allocation. This aligns with recent theoretical arguments suggesting that
strategic pauses and task avoidance can foster metacognitive reflection and
better goal alignment, ultimately enhancing learning outcomes20,59. Our
research operationalizes this reframed understanding of disengagement
within adaptive learning contexts, demonstrating how intentional disen-
gagement behaviors can and should be scaffolded productively to support
learner agency and sustained engagement over time17,36.

Our findings yield several actionable recommendations for the design
and deployment of adaptive learning systems and motivational scaffolds
within authentic educational settings.

First, adaptive systems should incorporate discrepancy prompts tai-
lored specifically to learners’ prior knowledge (PK) levels. For learners with
low prior knowledge (LPK), prompts should encourage reflective engage-
mentwith foundational tasks, guiding them to recognize gaps and gradually
build confidence and skills5,7. For high prior knowledge (HPK) learners,
prompts should challenge their intuitive reasoning and heuristics, even after
successful task completion or correct answers. For example, the system
might ask, “Your solution is correct, but canyou simplify or explain the steps
you took?” Such discrepancy prompts could stimulate deeper reflection and
metacognitive awareness, helping HPK learners refine their understanding
and avoid superficial or error-prone strategies41,51.

Second, adaptive learning environments should recognize and scaffold
strategic disengagement as an intentional and potentially productive choice.
Rather than penalizing learners for disengagement, systems could prompt
learners to articulate the reasoning behind their decisions to skip or post-
pone tasks, thereby making disengagement a reflective, metacognitive act.
This aligns closely with O’Brien et al.59’s reframing of disengagement as
agency-driven, highlighting the importance of learners’ active control in
managing cognitive load andmotivational states. To achieve this, oneway is
to explicitly implement reflective prompts such as, “Can you explain why
you chose to skip this task?” to enhance learners’ metacognitive skills and
empower them to regulate their learning paths more strategically. Another
way is to incorporate concretized interface elements that encourage learners
to articulate reasons behind task disengagement. For example, designing
buttons with dropdown selection of brief sentences such as “Skip because I
already know the solution”, “Skip because I feel cognitively overloaded” or
“Skip because I am confident of my ability to do well” instead of using
generic navigation buttons labeled “Next” or “Continue”. Table 6 presents
concrete examples of such redesigns.

Third, our approach underscores the importance of shifting the ana-
lytical and practical focus away from simplistic categorizations (e.g., high vs.
low performers) towardmore nuanced assessments based on learners’ prior
knowledge6,7. Recognizing that LPK learners might achieve high perfor-
mance by cautiously building foundational understanding, whereas HPK
learners might initially exhibit strong performance yet still benefit from
scaffolding that encourages critical self-assessment and deeper reasoning.
Therefore, adaptive systems should regularly prompt learners to self-assess
and calibrate their understanding against task complexity and personal
learning goals, supporting continuous development of strategic choice-
making skills.

Table 6 | Example redesign of prompts and interface elements

Context Current system Redesigned prompt/interface element Intended effect

LPK: Foundational task
engagement

“Would you like to review
a worked example?”

“Reviewing thisworked example can help you spot steps youmight
miss. Would you like to try it now?”

Encourage reflective engagement and
confidence building

HPK: Post-success
reflection

No prompt after correct
answer

“Your solution is correct, could you explain your reasoning or find a
more efficient method?”

Challenge heuristic reliance and deepen
reasoning

Strategic disengagement “Next” or “Continue”
button

Add a “Skip task” button with dropdown options: “Already
mastered,” “Too easy,” “Feeling overloaded,” “Want to revisit later”

Make disengagement a metacognitive
choice; gather actionable learner data

Self-assessment after task No follow-up “Ona scale of 1–5, howconfident are you in applying thismethod to
a new problem?”

Support calibration of understanding to
task complexity

https://doi.org/10.1038/s41539-025-00366-7 Article

npj Science of Learning |           (2025) 10:77 8

www.nature.com/npjscilearn


Fourth, methodologically, we recommend researchers adopt fine-
grained analytical techniques, such as process mining, to capture learners’
dynamic choice-making patterns. Utilizing process mining techniques can
reveal subtle but significant differences in how students interact with
adaptive scaffolds over time, capturing the dynamic evolution of SRL
behaviors that traditional analytical methodsmight overlook36,57. Such fine-
grained analyses provide robust evidence for designing more precisely
targeted and context-sensitive scaffolding interventions.

Finally, our findings have implications for deploying adaptive scaffolds
in authentic classroom contexts rather than controlled laboratory settings.
While prominent SRL studies such as those involving MetaTutor have
largely involved undergraduate students learning complex scientific content
in lab environments15,20, our study involves adaptive scaffolding within
classrooms. This real-world educational setting provides evidence that
adaptive motivational scaffolds delivered by pedagogical agents can be
feasibly and effectively integrated into everyday learning environments. It
also emphasizes the importance of contextually appropriate design con-
siderations, including scalability, practicality, and sustainability of adaptive
supports in classroom settings.

We acknowledge several limitations of this study that should be
addressed in future work. First, the study was conducted with a relatively
small and culturally homogeneous sample of German students in a single,
short-duration session (less than one class period). This limits the gen-
eralizability of the findings to other cultural or educational contexts. Cross-
cultural replications with more diverse learner populations would help
determinewhether the observed patterns, particularly the interplay between
prior knowledge and choice-making, hold across different educational
systems and cultural norms.

Second, the current study focused on a single STEM domain (algebra)
and a single type of motivational scaffolding, namely prompts framed
within Expectancy-Value Theory. Future research could examine other
aspects of motivational prompts informed by alternative theoretical fra-
meworks, such as Self-Determination Theory25, which emphasizes auton-
omy, competence, and relatedness, or Goal Orientation Theory60, which
focuses on mastery and performance goals. Investigating the design and
implementation of prompts derived from these theories could provide a
richer understanding of how different motivational strategies impact stu-
dents’ SRL and choice-making behaviors across a broader range of
content areas.

Third, the short intervention duration may have constrained the
measurable impact of PAs on learning outcomes, as prior studies suggest
that motivational effects often emerge over extended or repeated
exposure61,62. Longitudinal designs could capture how choice-making and
strategic disengagement evolve over time and whether sustained PA-
supported scaffolding leads to more durable SRL gains.

Finally, the present study measured choice-making through system-
logged task engagement decisions. Futurework could complement thiswith
multimodal data collectionmethods, such as eye-tracking, facial expression
analysis, or think-aloud protocols, to gain further insights into the cognitive
and affective processes driving engagement or disengagement. This richer
data could informmore adaptive, context-sensitive scaffolds that respond in
real time to indicators of learner state, motivation, and cognitive load.

Overall, our study advances understanding of motivational pedago-
gical agents within adaptive learning systems by highlighting their nuanced
impact on students’ strategic choice-making and conceptual understanding.
We demonstrated the critical importance of aligningmotivational scaffolds
with learners’ prior knowledge. Specifically, we found that low prior
knowledge students benefit most from foundational scaffolds, such as
worked examples, to build initial confidence, while high prior knowledge
students require targeted discrepancy prompts designed to encourage
deeper reflection and disrupt heuristic thinking. Our findings also challenge
traditional perspectives on disengagement by reframing it as an intentional,
adaptive component of self-regulated learning. Practically, our work sug-
gests that adaptive systems should support strategic disengagement,
potentially through concretized interface elements that encourage learners

to articulate their reasons for skipping tasks. Such design considerations
respect learner agency, facilitate reflection, and enhance metacognitive
regulation. Moreover, using process mining methods to capture the tem-
poral dynamics of students’ choice-making behaviors allows for more
precise and context-sensitive identification of learners’ needs, informing
more targeted and timely adaptive interventions. Overall, our research
contributes to the ongoing discourse on designing effective adaptive
learning environments, offering actionable insights aimed at narrowing
achievement gaps among learners with differing prior knowledge levels.
Future work should continue exploring personalized scaffolding mechan-
isms, extending our findings across diverse STEM domains, and leveraging
multimodal analytical methods to ensure adaptive technologies effectively
support all learners in becoming high performers and executing strategic
choice-making behaviors, regardless of their starting point.

Methods
The adaptive learning system
The study examines AlgeSPACE, an adaptive learning system designed for
early algebra, co-developedwith a school teacher over 13months to support
students’ “learning-by-doing” through stepwise problem-solving63. Alge-
SPACE includes four independent modules focused on solving linear sys-
tems of equations, emphasizing distinct strategies such as substitution and
elimination methods through real-world examples as well as flexible pro-
blem solving using the most suitable strategy. Students can engage with the
modules in any order, as they operate independently without predefined
sequences.

This study focuses on a single module integrating pedagogical agents
(PAs) to scaffold strategic choice-making while fostering conceptual
understanding of algebra. Although not a fully developed ITS, the module
incorporates adaptive scaffolding features similar to those commonly found
in ITS environments. It contains 28 exercises, divided into three types
designed to elicit distinct decision-making scenarios and accommodate
learners with varying levels of prior knowledge.

Suitability exercises allow students to freely select a solution method,
after which they can compare their approach to a less efficient hypothetical
peer method or re-solve the problem using a system-suggested optimized
method. These tasks havemoderate cognitive demands and are particularly
useful for learners with low prior knowledge (LPK) to build foundational
procedural skills while gaining exposure tomore efficient strategies through
comparison. For high prior knowledge (HPK) learners, these tasks provide
opportunities to confirm strategy choice accuracy.

Efficiency exercises require students to identify the most efficient
method upfront (i.e., requiring the smallest number of solution steps) and
then self-explain their rationale. These tasks place higher cognitive demands
on learners and are particularly suited toHPK learnerswho can strategically
evaluate methods and articulate reasoning; however, the self-explanation
component also supports LPK learners by scaffolding metacognitive
awareness even if their initial judgments are less accurate.

Matching exercises task students with pairing equations to optimal
solving strategies and justifying their choices, emphasizing conceptual
understanding of structural features in equations and supporting transfer.
For LPK learners, this exercise type offers guided exposure to structural
analysis without the full cognitive load of solving, while for HPK learners it
reinforces strategic flexibility across problem types.

Each exercise presents opportunities to engage with optional cognitive
or metacognitive tasks, such as self-explanation, strategy comparison, or
manual calculation (see Fig. 3 for an overview of the choice-making
workflow). These tasks draw on evidence-based practices for enhancing
mathematical learning, such as the benefits of self-explanation for con-
ceptual understanding64. For example (see Fig. 4),when solving a system like
2x+ y = 5 and y = 2+ x, students correctly choose the substitutionmethod
as the most efficient method and then proceed to the first optional task of
self-explanation. Students autonomously choose whether to engage with
this self-explanation task by selecting “Yes” or “No,” without penalties or
rewards tied to their decisions.Therewereno evaluativemessages indicating
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whether a choice was “good” or “bad.” Selecting “Yes” led them to complete
the prompted self-explanation task, while selecting “No” allowed them to
proceedwithout engaging in self-explanation.This designprioritizes learner
autonomy over compliance, allowing progression regardless of choices3.
The German-language version of the tool was used in this study.

Participants and experimental conditions
The study involved 54 students (40 ninth-graders, 14 tenth-graders; typi-
cally 14–16 years old) from three classes across two German schools,
selected in collaboration with teachers based on curricular relevance. Par-
ticipantswere randomly assigned to one of two experimental conditions in a
between-subjects pretest-posttest design (see Fig. 5).

In the Agent Condition, optional task prompts were delivered by an
on-screen pedagogical agent that appeared as a human-like character,
accompanied by a conversational text bubble containing motivational
messages tailored to the specific choice-making scenario (Fig. 5a). The PA’s
visual embodiment aimed to create social presence and engagement50, and
the prompts were phrased in a friendly, encouraging tone to foster rapport
and increase learners’ willingness to engage, as predicted by Social Agency
Theory65. For example, students solving problemsmanually were reminded
that “If you regularly calculate by hand, you will become faster and more
efficient at solving tasks.” (Fig. 5a). As shown in Table 7, these prompts
are aligned with different choice-making scenarios, such as worked exam-
ples (S1_WorkEx), self-explanations (S2_Self-Expl), and comparisons
(S3_Comp).

In the Non-Agent Condition, the same system interface was presented
without the PA’s visual embodiment or itsmotivationalmessaging (Fig. 5b).
Students in this condition encountered equivalent task prompts (e.g.,
“Would you like to compare your solution with a peer’s?”) in concise,
instructional text form without additional motivational framing. The
absence of PA embodiment and socially framed encouragement removed

the interpersonal cues shown to influence learner motivation, perceived
support, and persistence55,66.

Thus, both conditions featured identical exercises, feedback, and
choice-making opportunities. The key difference lay in how optional task
prompts were delivered: in the Agent Condition, prompts were accom-
panied by a human-like pedagogical agent and framed with socially enga-
ging, motivational language; in the Non-Agent Condition, prompts were
presented as concise, instructional text without agent embodiment or
motivational framing.

Measures
Pre-Post Tests. Students’ conceptual understanding of linear systems was
assessed through counterbalanced pre- and posttests, each containing three
exercises measuring three constructs, including method selection accuracy
(identifying optimal solving strategies such as substitution, equalization, or
elimination67), mathematical justification (explaining rationale for method
choice68), and procedural fluency (solving system correctly69). Each exercise
followed a three-part format (method selection, justification, and solution),
scored as 1, 2, and 3 points respectively (max 18 points per test). For more
details of the test, see Supplementary Information (Supplementary Note 1).

PriorKnowledge.Pretest scores (median = 6.75,M = 7.39)were used to
classify students into high- (n = 24) or low-prior-knowledge (n = 25) groups
via median split. A t test confirmed significant differences between groups
(t(47) =−2.13, p < 0.05).

Error Rates. Errors (e.g., incorrectmethod selection, incorrect choice of
reasons for the self-explanation tasks) were logged to assess conceptual
misunderstandings. Error rates were calculated as total errors divided by
exercises attempted. Errors can occur under different choice-making sce-
narios (see Fig.3. red marks “Errors can occur”).

Choice-Making Behaviors. Engagement with optional tasks (e.g., self-
explanation, strategy comparison) was measured by choice-making

Fig. 3 | Overview of choice-making workflow. This figure presents the workflow of
task choice-making in the AlgeSPACE environment. The diagram shows the
sequence of decision points available to students, beginning with the option to
engage with a worked example exercise. From this starting point, students proceed
into one of several task types represented by colored boxes, with arrows indicating
transitions between options. The purple boxes represent suitability exercises, in
which students choose to engage in solution-comparison tasks by evaluating and
contrasting the suitability of different solutions. The yellow boxes represent effi-
ciency exercises, where students choose to complete a self-explanation task that

involves selecting the single most efficient explanation from multiple-choice
options. The green boxes represent matching exercises, which also offer opportu-
nities to engage in self-explanation tasks but require students to select multiple
correct answers. Each of these exercise types include opportunities to engage in
manual calculation tasks, represented as subsequent steps in the workflow. Gray
boxes denote common or confirmation steps, such as applying the selected methods
to solve equations or ending the session. At each decision point, students may freely
decide whether to engage in optional tasks, illustrating the self-regulated nature of
the environment.
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frequency - the proportion of “Yes” responses to total choice-making
opportunities (range: 0–1).

Procedure
The study was conducted during regular school hours in a university
classroom for approximately an hour with a total of 54 participating stu-
dents. All participants were secondary school students under the age of 18.
Prior to the study, written informed consent was obtained from their legal
guardians, and student assent was collected on the day of participation.
Ethical approval was granted by the authors’ institutional review board (No.
23-12-09) before data collection began.

During the study, participants began with a 10-min pretest assessing
their baseline understanding of linear equations. This was followed by a
5-min interactive tutorial introducing the system. Students then engaged
in a 25-min learning session using their own, school-provided iPads,
working independently in their assigned condition. Afterwards, they
completed a 10-min posttest with isomorphic problems from pretest to
measure learning gains and a brief questionnaire on their perceptions of
the tool. Interaction data which includes choice responses (Yes/No),
answer correctness, solution steps, and time spent were logged auto-
matically by the system.

Of the 54 students who participated, five students were excluded from
the analyses due to incomplete posttests or disengagement (e.g., skipping all
optional tasks), resulting in a final analytic sample of 49 students (Agent
Condition: n = 24; Non-Agent Condition: n = 25).

Data analysis
To address RQ1 (impact of pedagogical agents on conceptual under-
standing) and RQ2 (influence of PAs on choice-making behaviors), we
conducted ANCOVAs (to compare posttest scores and error rates between
conditions, controlling for their prior knowledge,measured through pretest
scores). We also conducted two-way ANOVAs to examine the interaction
effect between condition (Agent/Non-Agent) and prior knowledge (High/
Low) on posttest scores, learning gains, and error rates. Post-hoc pairwise
comparisons (Tukey-adjusted) clarified significant differences between
subgroups (e.g., Agent High vs. Non-Agent Low on posttest scores). For
RQ3(dynamic choice-makingprocesses over time), Lag SequentialAnalysis
(LSA) identified temporal action patterns using z-scores and Yule’s Q
values, while Process Mining visualized macro-level regulatory trajectories
across prior knowledge groups.

The system logged detailed interaction data throughout the learning
process, including students’ engagement with optional tasks (e.g., “No to

Fig. 4 | Example interface of an efficiency exercise. This figure illustrates the
interface and workflow of an efficiency exercise. At the start, students are prompted
to choose the method that requires the least transformation (yellow box, required
step). They may then encounter an optional self-explanation activity (blue box,
choice-making opportunity), which is presented as a multiple-choice question with
one correct answer. Errors can occur at this stage if students select an incorrect
explanation option. In such cases, the interface provides immediate feedback (red
text, top-right panel), and the student is guided to make another selection. Correct
responses (green text, bottom-right panel) allow students to proceed smoothly. In
the main task flow, students apply the substitution method (yellow box, required

step) to solve the equation. At this point, they face another choice-making oppor-
tunity: either attempt the problem manually or receive support from the system. If
students opt to solve by hand, they can enter their answer into a textbox (blue box).
Errors may occur if an incorrect solution is entered, in which case the system
provides corrective feedback before moving to the final solution stage. Alternatively,
students may choose to bypass manual input and request the correct answer directly
from the system. In all cases, the exercise concludes with the solved equation. Colors
are used consistently to encode task function: blue boxes represent choice-making
opportunities, yellow boxes represent required or predetermined steps, and gray
boxes represent task transitions.
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worked examples”, “Yes to self-explanation”), solution strategy selection
(e.g., “selected Equalization”, “selected Substitution”), problem-solving
steps (e.g., “DRAG TERM from SECOND RIGHT and DROP for VAR y,
SUCCESS”), error incidents (e.g., “selected option 3, FAILURE”), and
success outcomes of their problem solving (e.g., “SUCCESS”,
“FAILED” flags).

To translate these raw interaction logs into meaningful learning deci-
sion actions, we developed a systematicmapping scheme tailored to the task
contexts. This approach follows the log-to-action mapping procedures in
previous learning analytics studies34,57,70. In our study, each logged eventwas
interpreted based on a combination of recorded fields and external task-
specific references. The mapping was implemented as a deterministic, rule-
based process in which each event type was assigned to a predefined cate-
gory according to fixed criteria derived from system parameters (e.g., suc-
cess/failure flags, task IDs) and task documentation. Because this process
applies consistent rules to structured log data without subjective coder
judgement, inter-coder reliability measures (e.g., Cohen’s κ) are not
applicable. To ensure accuracy, themapping rules were iteratively tested on
a sample of events, cross-checked against task specifications, and refined
until all cases were correctly assigned. Actions involving voluntary
engagement (e.g., whether to engage in optional self-explanations orworked

examples) were coded as explicit “choices” (Yes/No decisions: YesToExtra,
NoToExtra, YesToPrompt, NoToPrompt). In contrast, method selections
within required problem-solving tasks were categorized separately as either
“AttempSuccess” or “FailedAttempt,” depending on correctness relative to
task documentation and associated error logs. Through several iterations,
we mapped the raw log event types to eight learning decision actions (see
Table 8).

In total, the analysis resulted in 5144 labeled decision actions, orga-
nized into 49 sequences, each representing a complete interaction sequence
of a single student across all tasks within the adaptive system.

Toanalyze differences in interaction sequences betweenhigh- and low-
prior-knowledge learners, Lag Sequential Analysis (LSA) was applied to the
coded decision-action data. This method estimates the likelihood of con-
secutive actions by analyzing overlapping samples, evaluating the prob-
ability of one event following another71. The purpose of LSA in this study
was to identify sequences of student behaviors that occur with greater fre-
quency than would be expected by chance, thereby uncovering significant
patterns in task engagement and decision-making processes.

The term ‘lag’ in LSA denotes the temporal relationship between
events,with ‘lag 1’ indicatingdirect transitionswhere one event immediately
follows another, and ‘lag 2’ representing indirect transitions with an

Fig. 5 | Two versions of the system used in the study. This figure presents the two
experimental conditions implemented in the AlgeSPACE environment. Panel
a shows the agent condition, where a pedagogical agent is displayed in the bottom-
left corner of the interface and delivers motivational prompts to encourage
engagement with the task. In this example, the agent prompts the student to attempt
solving the system of equations by hand and reminds them of the benefits of prac-
ticing before receiving automated feedback. Panel b shows the non-agent condition,

in which the interface is identical except that the agent and its prompts are absent.
Students in this condition complete the same tasks without additional motivational
scaffolding. Both versions present the same algebraic problems and require students
to solve a system of equations using the equation method. The only difference
between the conditions is the presence or absence of the pedagogical agent’s visual
and motivational prompts.

Table 7 | Pedagogical agents’motivational prompts for different choice-making scenarios

Scenarios Definition Motivational prompts

S1_WorkEx Engagement with pre-solved worked examples. “This helps you to remember the topics you have learnt and to solve
upcoming tasks more efficiently. ”

S2_Self-Expl Explaining their ownsolution strategy (by selecting themost appropriate
explanation statement from multiple options).

“When explaining, you think about the best solutions, which
strengthens your problem- solving skills”

S3_Comp Comparing solutions with peers. “Comparing different methods deepens your understanding of
mathematical concepts and how they are related.”

S4_Resolve Resolving problems using new strategies. “Trying out different methods shows you that there are often several
ways to solve a problem.”

S5 & S6
1st & 2nd Sol

Manually solving for first & second unknown variables “Manual calculations are required in many exams. Regular practice
prepares you for this.”

S7 & S8
Adv_Equ &Adv_Sub

Engagement with complex Equalization or Substitution strategy. “In this task, you will learn an additional strategy that can also help you
with other tasks.”

WorkEx worked examples, Self-Expl self-explanations, Comp comparisons, Resolve resolving, 1st & 2nd Sol 1st solution and 2nd solution, Adv_Equ advanced equalization, Adv_Sub advanced
substitution.
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intervening action, suggesting more complex or delayed strategies or
decision-making process. Sequences are deemed statistically significant if
they achieve z-scores ≥ 1.96 (p = 0.05). However, as z-scores alone may not
confirm the robustness of a pattern, Yule’s Qwas also calculated72. Yule’s Q,
a transformation of the odds ratio scaled between−1 and+1, measures the
strength of association. Significant z-scores paired with Yule’s Q values ≥
0.30 indicate meaningful relationships.

Significant sequences at lag 1 were identified first, with three-event
chains considered significant only if both the lag 1 and lag 2 transitions
demonstrated statistical significance73. Due to the large number of coded
actions and the increased likelihood of Type I errors in significance testing,
Pearson chi-square (χ²) tests were performed to validate the overall sig-
nificance of observed transitions71. A significant χ² result justified further
analysis of individual sequences, using adjusted residuals and z-scores to
assess their validity.

The LagSequential R package74 was used for this analysis, computing
transition probabilities, chi-square values, z-scores, Yule’s Q, and the count
of code transitions. This approach revealed how high- and low-prior-
knowledge learners differed in their engagement and regulatory processes,
particularly in response to system prompts.

Process mining was used to model learners’ interaction pathways,
capturing how underlying cognitive and regulatory strategies shape
sequential behaviors56. The analysis was performed using Fluxicon Disco
(https://fluxicon.com/disco/), a widely used tool for process mining in
education36,75. Results were visualized through Heuristic Net graphs, high-
lighting event frequencies and dependencies, providing insights into the
sequential structures and regulatory strategies that characterize student

interactions across different prior knowledge groups. This approach pro-
videdmacro-level insights into how prior knowledgemoderates the impact
of system scaffolding on self-regulated learning.

Data availability
Due to privacy restrictions, the raw student log data cannot be shared
publicly. Derived data supporting the findings of this study are available
from the corresponding author upon request.

Code availability
The analysis scripts are available from the corresponding author upon
request.
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